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We determine the circumstances under which baroclinic instability in the Charney 
model subjected to localized time-periodic forcing manifests itself as a wavetrain that 
oscillates at the source frequency and amplifies in space with distance from the 
source ; analytical and numerical results describing the salient characteristics of such 
waves are presented. The spatially amplifying disturbance is a hitherto unsuspected 
part of the response to a pulsating source, and coexists with the more familiar neutral 
Rossby wavetrains; it  is likely to play a role in a wide range of atmospheric and 
oceanic phenomena. 

The central results rely on a careful application of a causality criterion due to 
Briggs. These results illustrate a practical means of attacking spatial instability 
problems, which can be applied to a broad class of systems besides the one at hand. 
We have found that the Charney problem with positive vertical shear is not 
absolutely unstable, so long as the wind at the ground is non-negative. This implies 
that spatial instability and forced stationary-wave problems are well posed in an 
open domain under typical atmospheric circumstances. 

The amplifying waves appear on the downstream side of the source, have eastward 
(downstream) phase propagation and have wavelengths that increase monotonically 
with decreasing frequency, becoming infinite at zero frequency. When the surface 
wind is not too large, the spatial amplification rate has a single maximum near the 
frequency om = ( f / N )  U,, where f is the Coriolis parameter, N is the stability 
frequency and U, is the vertical shear; the rate approaches zero at zero frequency 
and asymptotes algebraically to zero at large frequency for any positive surface wind. 
Distinct Charney and Green modes do not appear until the surface wind is made very 
large. The amplification rate at w, becomes infinite as surface wind approaches zero, 
suggesting a mechanism for the concentration of eddy activity. 

We also discuss the relationship of these results to the structure of low- and 
high-frequency atmospheric variability. 

1. Introduction 
Considerable success has been achieved recently in understanding certain quasi- 

stationary circulation patterns of the Earth’s atmosphere in terms of forced 
stationary Rossby wavetrains (Hoskins & Karoly 1981). This work has shown that 
the periodic boundary condition formally necessary on a sphere plays little role in 
the phenomena, as the waves do not have time to complete a circuit of the globe 
before they are damped out. For the purposes of theoretical work, it is therefore 
profitable to view the motions as existing in an open domain. Since the programme 
has been so successful in the zero-frequency case, it  is likely to yield interesting 
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insights at low frequencies as well. Indeed, the atmospheric convection thought to 
be responsible for the forcing of the wavetrains is known to exhibit considerable 
fluctuation on timescales of five days or longer (Sardesmukh & Hoskins 1985). 
Interesting patterns have been discerned in the atmospheric low-frequency variability 
(Blackmon, Lee & Wallace 1 9 8 4 ~ ;  Blackmon et u2.19843), and it has been found that 
such motions contribute significantly to the rectified eddy fluxes which partly 
determine the long term state of the atmosphere (Plumb 1986). However, study of 
the response to fluctuating forcing is hampered by the following uncertainty: the real 
vertically sheared atmosphere is unstable to baroclinic disturbances, and it seems 
likely that fluctuating forcing (even of bounded amplitude) will excite these disturb- 
ances in addition to trains of neutral Rossby waves. If the baroclinic disturbances 
grow locally in time, they may dominate the forced response and render it meaningless. 
Such a criticism has occasionally been levelled at the zero-frequency case as well : we 
shall see that in both cases, the criticism is nugatory. These questions have led us 
to the consideration of the circumstances in which the baroclinic instability manifests 
itself as a train of waves periodic in time but amplifying in space with distance from 
an oscillating source. Clarification of the nature of spatial baroclinic instability is the 
prime goal of this paper. Although the present study was motivated primarily by 
low-frequency phenomena, spatial baroclinic instability is of relevance to a broad 
range of features of the natural world; it has been considered in an oceanographic 
context by Thacker (1976), and we shall see that it can play a role in determining 
the distribution of atmospheric cyclogenesis. Accordingly, we have attempted to 
provide a complete portrait of the dependence on frequency and other physical 
parameters. 

Disturbances that amplify in space rather than time arise in a variety of 
fluid-mechanical problems. Spatial instability has been treated for the case of viscous 
boundary layers by Gaster (1965), for free shear layers by Michalke (1965) and for 
jets and wakes by Betchov & Criminale (1966). Nevertheless, it  is fair to say that 
the spatial problem has received far less attention than the temporal problem. 
Solution of the spatial problem is beset by a number of difficulties, not the least of 
which is the necessity of distinguishing roots representing amplifying disturbances 
from those representing evanescence. The means of resolving this question through 
application of causality are reviewed in $3. The simplest formulation of the causality 
condition is due to Briggs (1964), where the reader can also find a discussion of 
earlier approaches. A causality condition was imposed by Gaster (1964, who 
independently arrived at  a formulation similar to that of Briggs. Recently, the free 
shear layer has been reexamined in the light of causality by Huerre & Monkewitz 
(1985). Briggs’ criterion is simple to state, but fiendishly difficult to apply to all but 
the most elementary dispersion relations. A secondary purpose of the work presented 
here is to illustrate a strategy for implementation of the criterion in problems of 
realistic complexity. 

In  the geophysical context, the only complete treatment of spatial baroclinic 
instability is the work of Thacker (1976) on the two-layer model; however, this model 
suffers from many well-known deficiencies as a model of instability in a continuously 
stratified fluid. Hogg (1976) considered spatial modes in a continuous model, but 
restricted attention to a special profile with vanishing shear at the boundaries, which 
renders the results inapplicable to the atmosphere; moreover, Hogg did not make 
use of a causality condition. In  the present work we consider spatial instability in 
the more realistic Charney problem (Charney 1947), paying special attention to the 
proper incorporation of causality. The problem also merits attention because the 



Baroclinic instability in the Churney model 295 

application of Briggs' criterion determines whether the flow is absolutely unstable. 
We shall show that previous indications of absolute instability in the Charney 
problem with non-negative surface wind (Farrell 1982, 1983) are incorrect. It is 
because of the lack of absolute instability that forced wave problems in this 
baroclinic flow can be expected to yield physically meaningful results. 

The plan of the paper is as follows. In  $2 we review the required equations of 
motion and the formulation of the Charney problem. The means of incorporation of 
causality and their application to the Charney profile are discussed in $3. Asymptotic 
properties of the spatial instability in a number of limits are given in $4, while 
numerical results covering a broader range of parameter space are given in $5. Some 
(speculative) applications to understanding atmospheric variability are presented in 
$6. Our principal conclusions, along with some directions for future work, are 
summarized in $ 7, 

2. Equations of motion 
The baroclinic-instability problem studied in the seminal work of Charney (1947) 

is obtained by linearizing the quasigeostrophic /3-plane equations about an isothermal 
atmosphere with constant vertical wind shear. Adopting a local Cartesian coordinate 
system with x pointing eastward, y northward and z upward, the potential-vorticity 
equation reads ( 2 . 1 ~ )  

P = vz+ +p-' %(Pf 2/w a, + + P Y ,  (2.lb) 

where + is the stream function in the (2, y)-plane, V2 is the horizontal Laplacian, 
J(A, B) = a, A a, B -  a, B a, A, p(z) is the background density, f is the (constant) 
Coriolis parameter a t  the central latitude, N is the BruntrVaisalii frequency and /? 
is the meridional gradient of the Coriolis parameter. For an isothermal atmosphere 
p = po exp ( - z / H ) ,  where H = RT/g is the scale height, and N is constant. For a flat 
frictionless lower boundary, the bottom boundary condition is 

and the system is closed by application of a radiation or boundedness condition at 
z = co. Henceforth we shall adopt non-dimensional units with depth scaled by H ,  
length by the radius of deformation L, = N H / f ,  and velocities by U, H, where U, 
is the vertical shear of the basic state. We substitute 

(2.2) 

ataz++J($,az$) = o at = 0, (2 . lc )  

$ = - ( Uo + z) y + @ ( z )  ei(kz+zy-ot). 

where Uo is the non-dimensional surface wind, into (2.1) and linearize to obtain the 
problem 

= O  a t z = O ,  
d@ @ 
dz U o - w / k  
-- 

which is completed by an energy-decay condition 

( 2 . 3 ~ )  

(2.3b) 

@ e++O as z + m .  ( 2 . 3 ~ )  
These equations define the dispersion relation A such that k ,  1 and w are related by 
A ( k ,  1, w )  = 0. Specifically, if $(z, k ,  1, w )  is the solution to ( 2 . 3 ~ )  satisfying (2.3c), then 
(2.3 b) implies 

(2.4) 



296 R.  T .  Pierrehumbert 

Uo and p are the fundamental parameters of the problem; in terms of the 
dimensional quantities, they are given by U,, = ( Uo)dim/Uz H and p = Pdim LlIU, H. 
The properties of the temporal problem w ( k ,  1) have been exhaustively studied, and 
are summarized in Pedlosky (1979). In  the temporal problem, Uo simply shifts the 
real part of w ,  and hence can be set equal to zero without loss of generality. Then, 
if n is the greatest integer less than or equal to p, there is a unique unstable mode 
at each k2 + Z2, except when k2 + Z2 is equal to zero or any of n+ 1 critical values; w + O  
at these points. For typical values of the atmospheric shear, p lies between zero and 
one, whence there is a single non-zero critical wavenumber k,. 

For the most part we shall concentrate on motions that amplify in the x-direction 
only. In this case 1 is a specified real number and k is the unknown (complex) quantity 
to be determined. Some results on the more general problem involving amplification 
in both directions are offered in $5. 

In the numerical results presented below, d was computed by numerically solving 
( 2 . 3 ~ )  subject to ( 2 . 3 ~ )  and making use of (2.4). A fourth-order variable-step method 
was used, and ( 2 . 3 ~ )  was applied by matching the solution to the decaying 
exponential solution at z = 10. Typically, an increment 6z = 0.1 near z = 0 was 
sufficient to yield an accuracy of two significant figures in the final results. The 
equation d = 0 was solved for k using Newton's method along a continuation path 
to be described in $3 .  It is evident from (2 .3)  that if (k, I) is a solution corresponding 
to w then ( - k*, - Z*) is a solution corresponding to - w* ; hence it suffices to  consider 
only Re ( w )  > 0. 

3. Evolution of image of the Bromwich contour 
3.1. Statement of Briggs' criterion 

Solution of the dispersion relation for k in terms of real w generally yields many roots 
with non-zero imaginary part, and the chief difficulty arises in discriminating 
between spatially amplifying and evanescent disturbances. This is accomplished by 
identifying those solutions that can be obtained from an initial-value problem with 
spatially bounded initial data. The means of extracting causality information from 
the dispersion relation is discussed in Briggs (1964) ; 8s the clarity of his exposition 
could hardly be improved upon, the reader is referred there for a complete account 
and historical review. This material has also been reviewed in Merkine (1977) and 
Huerre & Monkewitz (1985). Here we shall provide only the background needed to 
state the result. 

For the purpose of illustration, consider a one-dimensional constant coefficient 
linear operator L(a,, a,) defined on the domain x E [ - 00,003. Let L ei(kz-wt) = 
d(k ,  w )  ei(kz-wt), so that d ( k ,  w )  = 0 defines the dispersion relation. Then, by making 
use of the Laplace transform in time and the Fourier transform in space, the solution 
to the forced initial-value problem 

where y is required to be larger than the maximum growth rate Im (w(k ) )  over all 
real k. G(k,w)  is determined by the forcing and initial conditions; considered as a 
function of w ,  it may have poles on the real w axis corresponding to spikes in the 
spectrum of the forcing, but is required to be analytic in the upper-half w-plane. The 
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path of integration in w is known as the ‘Bromwich contour’; we evaluate the 
long-time asymptotics of (3.2) by moving the Bromwich contour as far as possible 
toward the real w-axis. For a given w ,  the integrand has poles where d ( k ,  o) = 0, i.e. 
at  k = k(w), where k(w) is generally multiple-valued. For any y ,  k(w, + iy) as w, ranges 
over all real values defines a set of curves, which we shall refer to as images of the 
Bromwich contour under the mapping k(o) ,  or simply ‘Bromwich images’. For the 
original y ,  none of the Bromwich images cross the real k-axis, and so (3.2) receives 
contributions only from spatially evanescent solutions. However, as y is reduced to 
zero, one or more of the Bromwich images may cross the real k-axis, requiring the 
path of k-integration to be deformed so as to avoid the singularity. If the crossing 
is from above, (3.2) will receive contributions from negative Im (k) when x > 0, which 
represent spatially amplifying disturbances. If poles cross from below, amplifying 
disturbances are found for x < 0. Thus it is the poles k(w) that cross the real k-axis 
as y + O  that represent spatial instabilities. 

It may happen that as y is reduced toward zero, two branches of k(w) that originated 
on opposite sides of the real k-axis for the original choice of y coalesce for some w on 
the Bromwich contour. In  this case, the contour of integration for k cannot be 
deformed so as to avoid the singularity, and it can be shown that the contribution 
from this singularity grows exponentially in time a t  any fixed x. Such systems are 
said to be ‘absolutely unstable’. The necessity of the two roots coalescing at the 
saddle point having originated on opposite sides of the real axis is an important part 
of the absolute instability criterion, which has not always been sufficiently 
emphasized. The situation in which a system is unstable but not absolutely unstable 
is known as ‘ convective instability ’ ; it is only for convectively unstable systems that 
the spatial instability problem is well posed, though in cases where the absolute 
instability is weak, the spatial modes may nevertheless be of physical interest. We 
shall see shortly that the Charney problem is convectively unstable for any Uo 2 0. 

We note in passing that if the pinch occurs on the real w-axis then algebraic growth 
in time is possible if the spectrum of the forcing has a pole at the value wo where the 
pinch occurs. This is so because the residue [a, d(k(w) ,  0~) I - l  has a pole at wo, which 
leads to a double pole in the integrand if G also has a pole at wo. Since dw/dk = 0 
at  a pinch, this state of affairs corresponds to forcing of a wave with zero group 
velocity; the energy accumulates because it cannot propagate away from the source. 
Such flows are not convectively unstable in the technical sense, because the 
perturbations grow in time at a fixed site; in a generalized sense, though, the problem 
may still be regarded as convective, in that the temporal growth is dependent on 
continuation of the forcing and would disappear if the forcing were shut off. It can 
be inferred from the results of Held, Panetta & Pierrehumbert (1985) and Held, 
Pierrehumbert & Panetta (1986) that zero-group-velocity modes with real w do not 
occur on the Rossby-wave branch of the Charney dispersion relation when 1 = 0 (see 
especially figure 1 of Held et al. 1986). However, such modes can certainly exist when 
1 =# 0, just as they do in the barotropic case. The resonant forcing of Rossby waves 
with zero group velocity is a distinct issue from baroclinic instability, and will not 
be taken up further. Merkine (1982) has discussed zero-group-velocity resonances of 
barotropic Rossby waves ; his discussion fully illuminates the basic issues. 

It is straightforward to extend the causality analysis to the case in which the 
evolution is governed by a multidimensional partial differential equation with 
non-constant coefficients in some direction (other than x and t ) ,  such as arises in the 
study of baroclinic instability. Since a nearly identical initial value problem problem 
was treated exhaustively by Huerre & Monkewitz (1985), we shall present only a 
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sketch of the solution here. Consider forced y-independent motions of the quasi- 
geostrophic system (2.1). If  one adds a vorticity source F(x ,  t)  S(z-z’)  to the right- 
hand side of (2 . la)  and linearizes about the Charney profile one obtains 

(a,+ ua,)~/+(i+p)a,.v = ~ ( x , t ) ~ ( z - z ’ ) ,  (3.3) 

where U = U, + z and q’ = a,, $‘ - 3, $f + a,, +’ . The boundary conditions at z = 0 
and z = 00 are the same as for the homogeneous problem. Taking the Fourier 
transform in z and the Laplace transform in time, we find that the Fourier-Laplace 
transform of $‘ is determined by the linear inhomogeneous problem 

__-- d2@ d@+ ~- 1+p k2]@ = G(k,w)S(z-z’) 
dz2 dz [ U - o l k  -iw+ikU ’ (3.4) 

where @(k, w, z )  is the Fouriel--Laplace transform of $‘ and G(k, w )  is the transform 
of F. The boundary conditions on @ are still (2.3b, c). The solution to this problem 
can be constructed from solutions to the homogeneous equation (2.3) using elementary 
methods. We find that ] (3.5) 

@ + ( z )  @ - ( z / )  (2  > z ’ ) ,  

[ G(k, 0) @(k, w, Z) = 
(-iw+ikU(z’)) W(k,w,z) @ + ( z ’ ) @ - ( z )  ( z  < z’),  

in which @+ is a solution to (2.3) satisfying the upper boundary condition and @- 
is a solution satisfying the lower boundary condition. W(k, w ,  z )  is the Wronskian 
[@+ a, @- - @- a, @+I  of @+ and @- evaluated a t  z ’ ;  from the differential equation 
(2.3) it is evident that 

(3.6) 

Note that W vanishes identically precisely when @+ and @- are proportional, i.e. 
when there is a solution to the homogeneous problem. Thus W-,(k, w )  plays the same 
role as the polynomial d ( k ,  w )  appearing in (3.2), and in fact is proportional to the 
dispersion relation d as defined in (2.4). 

Most of our discussion of Briggs’ criterion remains unchanged, save that d becomes 
a general analytic function rather than a polynomial. There are two new wrinkles: 
(a) @ has an additional pole where -iw+ikU(z’) = 0, and (b) for any real constant 
C in the range of U ,  @ has a branch point where o / k  = C correspondng to a 
continuum mode. The Bromwich image k(w) for each continuum mode k = o/C is a 
line parallel to the real k-axis ; because it does not cross the axis it does not contribute 
to spatial instability. The same argument applies to the pole at k = w/U(z ’ ) .  If the 
forcing has a pole at w = 0, higher-order singularities can arise from the vanishing 
of the term w -  k U  at  w = k = 0; treatment of these singularities can be avoided by 
working with the transform of the meridional velocity, which is simply ik@ and has 
no problematic behaviour at k = 0. 

W ( k ,  w ,  z )  = W(k, w ,  O)eZ = W,(k, w )  ez. 

3.2. Application to the Charney problem 
Application of the Briggs criterion requires examination of the family of curves 
k(w, + iy), where or ranges over all real values and y parametrizes the family. The 
large number of branches of k(w) might at first make the task seem daunting; 
however, the difficulty is mitigated by the fact that one need only consider branches 
that cross the real k-axis. For any given y ,  the crossing points can be determined by 
inspection of the function w ( k )  on the real k-axis; one simply identifies the values k, 
at which wi(k,) = y ,  whence the corresponding o,(k,) at the crossings are known. 
With a solution k(w,+iy) for a particular w, in hand, the values of k for a range of 
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FIQURE 1. Complex frequency w as a function of real wavenumber k for the Charney problem with 
/3 = 0.5, U,, = 0 and 2 = 0. The growth rate Im ( w )  is given by the solid curve, while the frequency 
Re ( w )  is given by the dashed curve. gl is the maximum growth rate of the Charney-mode branch 
while ga is that for the Green-mode branch. The points A and B indicate the intersection of the 
line Im ( w )  = g with the Cherney branch, for gs c g c gl. The inset shows a magnification of 
the long-wave behaviour, indicating the disposition of the intersection points A' and B' with the 
Green-mode branch when g c ga. For further details see text. 

w, can be determined numerically by continuation methods. This strategy exploits 
information from the familiar temporal problem to facilitate solution of the more 
difficult spatial problem. For complicated or unexplored systems such a scheme is 
essential, as w(k) can always be reliably determined without a priori information by 
use of globally convergent eigenvalue routines, whereas k(w) cannot. 

= 0.5, I = 0 and U,, = 0. The 
eigenvalue w vanishes at k = 0 and k = k, = 0.5(/3(/3+2))4 0.56; the weakly 
growing modes to the left of k, are known as the 'Green modes', while the strongly 
growing modes to the right are known as the 'Charney modes'. At large k, wi+O and 
or+ 1 monotonically with O(l/k) error (see Appendix B). Let g, be the maximum 
Charney-mode growth rate and g2 be the maximum Green-mode growth rate. When 
y > g1 none of the Bromwich images cross the real k-axis. Now consider what 
happens as y is reduced. When g2 > y > g1 the line wi = y intersects w,(k) at  two 
points (marked A and B in figure l),  and consequently the Bromwich image crosses 
the real k-axis at the values of kr corresponding to A and B. To determine the 
behaviour near a point k, E 08, we form the expansion 

Figure 1 shows w(k) for the Charney problem with 

w(k) = w(k,) + (k- k,) w'(k,) ++(k - k,)' w"(k,) + . . . (3.7) 

and solve for k- k, to obtain 

(3.8) 
w-w(k,) 1 (w-w(k,))'w" +..., -- 

2 wt8 
k-k, = 

w' 

in which w is to be varied along the Bromwich contour. Suppose y = g,+i& 
with 6 << 1, and k, is chosen such that Im(w(k,)) = g,. Then o-w(k,) = 
(w,-w,(kl))+i6,  w'(k,) is real and Im (w"(k,)) is negative. Consequently, as w, is 
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FIQURE 2. Behaviour of Bromwich images k(w,+iy) near the critical point k,, as determined by 
the asymptotic results. The value of y is indicated on each curve. w, varies from zero (at the 
rightmost terminus of each curve) to a small positive value. Parameters are as for figure 1.  

varied, (3.8) describes a parabola in the k-plane which crosses the real k-axis a t  
two points near k, when S < 0. The orientation of the parabola is determined by 
the sign of w’(k,); in the problem at hand, w’(kl) > 0, the parabola opens upward, 
and therefore the Bromwich image crosses the real axisfrom above. This implies that 
the spatial instabilities connected with this branch amplify in the positive x-direction, 
a result that is consonant with the intuitive notion that the disturbances should 
amplify in the direction of the group velocity of the most unstable mode. 

If k, is not near the growth-rate maximum, I m  (w’(kl)) + 0 and only the first term 
in (3.8) is needed. As wr -w,(k,)  is increased through zero, k crosses the real axis from 
above if Im (w’(kl)) > 0 and from below if Im (w’(k,)) < 0. Hence the Bromwich 
image crosses from above at A and crosses back from below a t  B. We have no 
information about the form of the curve between A and B ; although it started as 
a parabola for y x gl, its topology may change as y is reduced. We shall see shortly 
that this indeed occurs. 

As y is reduced below g,, a second loop of the Bromwich image crosses the real 
k-axis, intersecting i t  a t  points A‘ and B’ to the left and right of the Green-mode 
maximum. Since w’ > 0 a t  this maximum, the crossing is from above, just as for the 
Charney mode. As y is reduced to  zero, A‘ moves to kr = 0, B moves to k, = m, and 
B‘ and A converge on k, from opposite sides. 

Let us now consider the behaviour of the Bromwich image near kc as y+O. I n  
Appendix A i t  is shown that in the vicinity of any neutral point 

k- k, = - B, 52,- B, 52, + iB, Q4 + . .. , (3.9) 

where B,, B, and B, are positive real constants (provided U, > 0) and 52 is 
proportional to  w with a positive constant of proportionality. Let 52 = 52,+iS, with 
6 > 0. The curve begins above the real k-axis at 52, = 0; when 52, x (B,/2B1) 6, it 
crosses the axis at k x k, + B, S2 (point A in figure l) ,  and when 52, x (2B, S/B,)i it 
crosses back at k x kc - B1(2B, S/B,)f (point B’ in figure I ) .  Asymptotic curves k(w) 
for ,8 = 0.5 and y = 0.02, 0.01 and 0 are shown in figure 2. The principal inference 
from this calculation is that  point,s A and B’ are connected by a continuous curve 
when y is small, though at larger y A connects with B while A‘ connects with B’. 
Hence, as the Bromwich contour is moved towards the real axis, the Bromwich image 
associated with the Green modes must at some point coalesce with that associated 
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FIGURE 3. Numerically determined development of the Bromwich images. Dashed curve gives 
segment associated with Green modes for or E [0,0.2]; Solid curve gives segment associated with 
Charney modes for w ~ E [ O , ~ ] .  Values of y are indicated on each curve. Parameters are as for 
figure 1 .  

with the Charney modes; past this point the curve breaks, and A connects with B' 
while A' connects with B. When y = 0 the arc emanating from kc lies entirely above 
the real k-axis and does not lead to spatial instability. One expects a single 
continuous branch of spatial instability continuing from the point k = 0, w = 0. 

This picture is confirmed by the numerically computed Bromwich images. In figure 
3 we show the evolution of these images as y (noted on each curve) is reduced to zero. 
The Green-mode branch (dashed curves) is shown for the range w, E [0,2], while the 
Charney-mode branch (solid curves) is shown for the range W,E [0, g]; in both cases 
the leftmost point on each curve is the mapping of w = 0 + iy. As anticipated, the 
two branches coalesce as y is reduced, the coalescence occurring between y = 0.04286 
and y = 0.02143. At this point the curves break and rejoin, so that when y = 0 we 
are left with a single spatially amplifying branch on which ki is monotonic in w .  (The 
loop corresponding to the asymptotic results in figure 2 is not shown.) The only relic 
of the Green-mode/Charney-mode distinction is a slight kink in the low-frequency 
Begment of the curve. 

It is important to note that the coalescence is between roots that originated on 
the same side of the real k-axis. Hence the system under consideration is not 
absolutely unstable; the asymptotic results suggest that this is the case for all 
positive /3 and V,, and we have encountered no numerical evidence to the contrary. 

In contrast, Farrell (1982, 1983) concluded that for a range of Uo2 0, there is an 
absolute instability associated with the Green modes. The use in his work of a WKB 
approximation to the true dispersion relation does not account for the differing 
conclusion; from the dashed contours in figure 4 (b) of Farrell (1982), computed for 
/3 = 1 using the WKB approximation, one can infer a development of the Bromwich 
image much the same as in our figure 3. Farrell simply failed to note the rather subtle 
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fact that the saddle point shown in his figure joins two branches which originated 
on the same side of the real k-axis, and hence does not represent absolute instability. 
This underscores the importance of a thorough examination of the topology of 
the Bromwich images. It is not sufficient merely to search for saddle points in the 
unstable portion of the complex plane. 

4. Asymptotic results on k(w) 
4.1. Low-frequency behaviour 

The spatial amplification rate for low-frequency forcing can be obtained from the 
long-wave form of the dispersion relation. Since w enters (2.3) only in the combination 
U o - c ,  where c F w/k, the long-wave behaviour is determined by the value of c 
corresponding to k = 0 and U,  = 0; we shall call this value c,(/3, 1 ) .  c,, is generally 
complex and non-zero. For small k,  w then has the behaviour w = (U,  + c,) k, whence 

C,, + U, - ic,, k =  
(C,, + U,)2 + c;, w y  

The temporally unstable branch has c,, > 0, and leads to a spatial instability that 
amplifies in the positive x-direct,ion. The amplification rate is linear in w and 
decreases monotonically with increasing U,. 

In  the special circumstances in which k = 0 is a critical point (e.g. when I = 0 and 
/? is an integer) c, vanishes and the above discussion must be modified. In Appendix 
A it is shown that in this case 

( 4 . 2 ~ )  

(4.2b) 

where D is a positive real constant. In both cases the amplification is again in the 
positive x-direction. As U, approaches zero the domain of frequencies in which (4.2a) 
is valid collapses to zero, and (4.2b) applies. For positive U, the long-wave 
amplification rates for fixed small w are weak compared with the non-critical case 
simply because the temporal growth rates become weak when k = 0 is a critical point. 
When U, = 0 the weak temporal growth rates are offset by very slow propagation, 
leading to an amplification rate that is greater than that of the non-critical case. 

4.2. Behaviour at large U, 
When k, is small and w is differentiable the amplification rate can be recovered from 
data on the real k-axis by means of the expansion 

w(k, + ik,) = w(k,) + ik, w’(k,), 

wr(kr) = w + O(k,), 

(4.3) 
in which w(k, + ik,) F w is required to be real. Matching real and imaginary parts of 
(4.3) implies 

(4.4a) 

(4.4b) 

Equation ( 4 . 4 ~ )  determines k,, which may then be used in (4.4b); this is the familiar 
group-velocity transformation (Gaster 1962). 
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If U,  is large and k, is not a critical point then w,(k,) x U, k, and w:(k,) x U,, 
whence 

Thus, apart from rescaling by - l /Uo,  the graph of spatial amplification rate 
becomes identical to that of the temporal growth rate evaluated at k, = w / U , ;  in 
particular, the value of w yielding the maximum amplification rate increases linearly 
with U,. This formula becomes invalid when w / U ,  is near a critical point k,, where 
the derivative of w ( k )  becomes infinite. It will be seen in $5 that the large-U, 
behaviour does not begin to be realized near k, until the surface wind is unphysically 
large; hence the detailed behaviour near k, will not be pursued. Away from critical 
points, the asymptotic behaviour is approached at more moderate values of U,, and 
the formula is correspondingly more useful. 

4.3. Short-wave behaviour 

The large-k asymptotic form of w(k) can be used to infer the behaviour of k(w) for 
values of w such that k % 1. In  order to shed some light on the circumstances in which 
k is expected to be large, let us first examine the function w(k) for U, = 0. Recall that 
w, = 1 +O(l /k)  and w, = O(l/k) at large real k in this case, which suggests that k 
becomes infinite as w-f 1. Moreover, the group velocity dw,/dk is O(l/k2) at large k, 
in consequence of which the estimated spatial amplification rate - w,/(dw,/dk) 
becomes infinite at large k. Thus short waves propagate so slowly that they are 
expected to lead to infinite spatial amplification rates even though their temporal 
growth rates are small. On the other hand, if U, > 0, then w x 1 + U, k at large k, 
whence k, x w /  U, for w % U, ; further, dw,/dk x U, and ki % - w,/ U, vanishes like 
O(l /w) for very large w .  These considerations suggest that when U, is not too large, 
k, and k, become large near w = 1, and k, falls to zero as w is made much larger. A 
proof of this assertion proceeds from the large-k asymptotic dispersion relation 
discussed in Appendix B. It is shown there that 

k = ~ ( ~ - l ) + ~ ~ ~ - l ) ~ - 4 U ~ b ~ ~ / 2 U ~ ,  (4.6) 

where b is a complex constant with negative real and positive imaginary part, given 
in (B 9). Equation (4.6) is valid only when it predicts k B 1. As expected, k, = O( l / w )  
at large w .  For U, = 0 and w < 1, (4.6) reduces to k = b / ( w -  l), whence k,++ 00 and 
k,+- co as w+ 1 from below. Values of w greater than unity do not lead to spatial 
instability in this case. When U, is small but non-zero, (4.6) is valid when w is of order 
unity or larger and predicts that - k, attains a maximum value proportional to U;i 
at w = 1. Because of the square root in the numerator of (4.6)) the peak in the 
amplificatiion rate is not expected to be sharp. When U, is of order unity or larger, 
(4.6) is not valid unless w is large, and the predicted peak in amplification rate at 
w = 1 is spurious. 

Numerical determinations of ki(w) with /3 = 0.5 and 1 = 0 are shown in figure 4 for 
the cases U, = 0 and U, = 0.2, along with the corresponding asymptotic predictions 
of (4.6). In  both cases the behaviour of the numerical results begins to conform with 
the asymptotic formula at moderate values of w .  In particular, for the case U, = 0.2 
the broad maximum in the amplification-rate curve near w = 1 is quite well 
reproduced by (4.6). (This is to be expected, as k, becomes large for w x 1, even 
though k, remains bounded.) Another noteworthy feature of the results is the great 
sensitivity of the response curve to modest changes of U, ; this, of course, stems from 
the w = 1 singularity appearing in the limit of vanishing surface wind. 
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FIGURE 4. Amplification rate - k, as a function of real w ,  for U,  = 0 and U,  = 0.2 (other parameters 
as for figure 1). The numerical results are shown by solid curves, and the corresponding short-wave 
asymptotic results are shown by dashed curves. 

w 

The peak in amplification for unit frequency and the infinite amplification for 
U, = 0 are of great physical import. In consequence of the former, it  would be 
expected that the variability of an atmosphere subjected to stochastic forcing would 
be concentrated in a broad band of frequencies disposed about w = 1, supposing the 
world to be linear; for U, = 0.2, e.g. there would be a strong preference for 
frequencies greater than 0.5. Nonlinearity, however, complicates the relation between 
amplification rate and response amplitude; in fact, the spectrum of fluctuations of 
500 mb geopotential height in the atmosphere peaks at very 2ow frequencies 
(Blackmon 1976). Allowing for nonlinearity, a more plausible prediction is that 
motions forced at frequencies near w = 1 saturate and lose coherence rather close to 
the source region, leading to a relatively local response. Low-frequency motions, in 
contrast, can propagate long distances from their source before being disrupted by 
nonlinear effects. 

The singularity in amplification rate at U, = 0 has implications for the spatial 
distribution of variability. Other factors being equal, it implies that in a medium in 
which U,, varies slowly in 2 and y, the greatest variability will be found in or 
somewhat downstream of regions of small U,. The singular amplification rate is 
connected with the transition of the Charney modes to absolute instability a t  U, = 0. 
The reasoning here is similar to that found in the work of Landahl(1972), who made 
use of a more qualitative group-velocity argument in order to explain the appear- 
ance of spikes a t  certain points in boundary-layer flows. The success of these 
arguments in laboratory conditions lends confidence to the expectation that a similar 
mechanism operates in the atmosphere. 

As the energy of short waves is trapped near to the lower boundary, these waves 
are apt to be strongly damped by Ekman friction. It is expected that Ekman friction, 
by stabilizing sufficiently short waves, would cause k, to fall to zero at  a finite 
frequency. For the case U, = 0, the high-frequency cutoff would occur at some o < 1 
and the singularity in k, would be eliminated in favour of a sharp peak a t  frequencies 
somewhat smaller than unity. Similarly, for small positive U,, the very gradual decay 
of k, at frequencies greater than unity would be replaced by a sharper cutoff and the 
peak response would be shifted to somewhat lower frequencies. Incorporation of 
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FIQURE 5. k(w, U,) for WE[O, 1.51 and U,~[0.1,0.5], with B = 0.5 and 2 = 0: (a) Im (k) (all values 
negative); ( b )  Re@) (all values positive). The dashed line gives the locus of the points where 
Re (k) = k,. 

Ekman friction into the results of Appendix B (and the numerical results) is entirely 
straightforward; however, in order to focus on the more basic features of the 
problem, a quantitative discussion of frictional effects will be left to future work. 

5. Numerical results on k(w,  p, U,) 
In this section we shall provide a more comprehensive picture of the dependence 

of k upon w ,  /? and U,, as revealed by numerical calculations. Quantitative results 
will be presented only for the case 2 = 0,  for which lines of constant phase are oriented 
perpendicular to the x-axis; we shall show later how certain characteristics of oblique 
waves can be recovered from these results. Consider first the dependence of k on w 
and U, with /? held fixed. Figure 5(a )  shows contours of k, in the (w,  U,)-plane for 
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FIQURE 6. As for figure 5, except w E: [0,3.0] and U,, E [0.5,1.5]. 
W 

W E  [0,1.5] and U,,E [0.1,0.5], with /3 = 0.5. In the range of U, shown, the amplifi- 
cation rate has only a single maximum as a function of w ;  as predicted in 54.3, the 
peak occurs at  w = 1 when U,, is small. As U, is increased, the peak shifts gradually 
to higher frequencies, evidencing a behaviour qualitatively like the large- U, limit 
described in $4.2. Although there is no separate Green-mode maximum, a vestige of 
the Charney/Green distinction remains in the form of a band of low frequencies in 
which the amplification rates are small and increase weakly with increasing frequency. 
This feature is also evident in the curve for U, = 0.2 in figure 4, where it shows up 
as a kink in the amplification curve near w = 0.25. It is within the weakly unstable 
range that the low-frequency approximation of $4.1 is useful. The boundary of this 
regime shifts to higher frequencies as U, is increased. Despite the existence of this 
band, the amplification rate becomes appreciable at  fairly low frequencies, provided 
the surface wind is not too large. 

The corresponding results on k,, shown in figure 5 ( b ) ,  reveal no features of 



Baroclinic instability in the Charney model 307 

particularly striking interest, but are included for the sake of completeness. At all 
U, the real wavenumber is a monotonically increasing function of frequency. As 
predicted by asymptotics, the wavelengths become quite short near unit frequency 
when U, is made small. Recall that the radius of deformation has been used as the 
lengthscale. Hence the contour k, = 1.2 can be thought of as separating the region 
of parameter space in which ‘synoptic-scale ’ motions (with wavelength shorter than 
about 6 deformation radii) are generated from that in which the larger-scale motions 
typically associated with low-frequency atmospheric variability are generated. 

The above results are extended to larger surface winds (U, E [0.5,1.5]) in figure 6. 
The peak amplification rate continues to move toward higher frequencies as U, is 
increased. Near U, = 0.8 the amplification rates cease being monotonic at low 
frequencies, and a dip forms separating low-frequency Green-mode from high- 
frequency Charney-mode behaviour. (This dip is not evident at higher U, in the 
figure, because the amplification rates are so small that few contours appear in the 
low frequency range.) According to the results of $4.2, it was inevitable that such 
a dip would appear, as the spatial results must come to resemble the temporal results 
at sufficiently large U,. To emphasize the convergence to this limit, we have plotted 
as a dashed line in figure 6(a) the curve on which kr is equal to the critical 
wavenumber k, obtained from analysis of the temporal problem. It is seen that for 
values of V,  greater than unity this curve accurately demarcates the frequency above 
which rapidly growing Charney modes are excited. It should be emphasized, though, 
that the values of U, in figure 6 are too large to be of much interest in the atmospheric 
context. 

The dependence of k on /3 is of considerable interest, as /3 amounts to a 
non-dimensional measure of the strength of the basic-state shear, with large /3 
corresponding to weak shear. Contours of k, in the (w,/l)-plane with U, fixed at 0.2 
are shown in figure 7. Surprisingly, the amplification rates are relatively insensitive 
to /3. Values of k, (not shown) are similarly insensitive to /l. A t  the higher frequencies 
the amplification rate actually increases slightly with increasing /3. Evidently, the 
weakening of temporal growth rates as the shear is reduced is entirely offset by the 
lower propagation speeds occurring for weak shear. The most notable qualitative 
feature of the dependence arises from the introduction of a second critical wavenumber 
in the temporal problem as /3 is made larger than unity. When /l = 1 the critical 
wavenumber appears at k = 0 in the temporal problem (yielding w = 0 in the spatial 
problem). As /3 is made larger the influence of the new critical point moves to higher 
frequencies; thus at  /3 = 1.5 one can discern two regions of large gradient in the 
amplification rate. The low-frequency behaviour for integral /3 was treated in $4.1. 
In  figure 7, U, is sufficiently small that the behaviour near /3= 1 most closely 
resembles that in (4.2b) with its implication of large gradients at low frequenciea; 
the result ( 4 . 2 ~ )  becomes valid only at considerably lower frequencies than can be 
discerned in the figure. 
The above results on purely zonally directed (k = 0) rays suffice to illustrate most 

of the physically interesting aspects of the problem. In  some contexts, however, it 
is desirable to deal with motions that have a non-trivial structure in the y-direction. 
In  a channel geometry, for example, it  would be necessary to consider motions with 
structure proportional to sin(ly), in which the allowable (real) values of 1 are 
determined by the channel width. The corresponding complex values of k can 
obviously be obtained by the same means used to solve the I = 0 problem. Unfortu- 
nately, there does not appear to be a Squire transformation that directly yields the 
amplification rates for non-zero real 1 in terms of those for 1 = 0. 
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FIGURE 7. -k , (o , /? )  for WE[O, 1.51 and /?E[O, 1.51, with U,  = 0.2 and 2 = 0. 

w 

On an infinite plane, however, there is no need to decompose the response into 
motions that are oscillatory in y while amplifying only in the x-direction. In this case, 
one can more profitably deal with motions that amplify in a direction perpendicular 
to the lines of constant phase, specifically those with a horizontal structure of the 

(5.1) 
form 

exp [i& cos 8 + y sin S)], 

in which 8 is a real constant and the total wavenumber ,u is allowed to be complex. 
Then, since 

transforming to a rotated coordinate system with 2 = x cos 8 + y sin 8 reduces the 
problem for ,u to the previous problem for k with 1 = 0 and w replaced by 4 = w/cos 8. 
This transformation is valid only if cos 0 > 0, so that the distinction between positive 
and negative x used in evaluating contour integrals is not compromised. In  short, 
the amplification rate for an oblique wave of the form (5.1) is the same as that for 
a zonally directed wave with a suitably defined higher frequency. This is the analogue 
of Squire’s transformation. In  the spatial problem, the result has the important 
implication that low-frequency oblique waves can have greater amplification rates 
(perpendicular to the lines of constant phase) than zonally directed waves of the same 
frequency, since 4 > w and the amplification rate increases with frequency at low 
frequencies. 

6. Relation to structure of atmospheric variability 
A detailed comparison of the stability results with atmospheric observations is 

outside the scope of the present work. It is nonetheless informative to consider a few 
quantitative predictions of the calculation, and to bring out some similarities to (and 
differences with) the observed structure of the atmospheric variability at  low and 
high frequencies. 
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Period (days) 

30 15 10 5 2.5 

Wavelength (km) 32 000 16000 10000 4 700 1600 
e-folding length (km) 14000 7000 3 300 1400 1000 
Phase speed (m/s) 10 11 10 9 7 

TABLE 1 .  Characteristics of amplifying disturbances arising from 
periodic forcing at a selection of periods 

Let us first consider some salient characteristics of the spatial instabilities in 
dimensional terms. The lengthscale is the radius of deformation N H / f ,  which is of 
the order of 700 km in midlatitudes. The shear is more variable, and enters into the 
timescale N / f  U,, the velocity scale U, H and the definition of /3. As noted, the results 
are not terribly sensitive to p. If we adopt a typical shear U, = (14 m/s)/(7 km) then 
the velocity scale is 14 m/s and the time scale is 0.5 days. With these values /3 = 0.58 
and the critical frequency w = 1 corresponds to a dimensional period of about 3 days. 
The shear used in this estimate is typical of the zonal mean wind; thus the local 
values appropriate to the major Pacific and Atlantic jets are rather greater, while 
those appropriate to the regions between the jets are rather less. The surface wind 
is typically small, and is therefore subject to considerable variation. We shall present 
results for U, = 0.2 (dimensionally 2.8 m/s) and discuss some consequences of the 
sensitivity to U, later. 

Some important properties of the amplifying disturbances corresponding to the 
parameter values cited above are summarized in table 1. The motions in question 
all exhibit eastward phase propagation with speeds of the order of 10m/s. The 
e-folding length increases smoothly with increasing period, but there is still consider- 
able amplification at the 15 day timescale. Lower frequency forcing results in larger 
spatial scales, to the point that the very long wavelengths encountered for the 30 day 
period render the consideration of local wavetrains dubious. It would also be difficult 
to excite the very-low-frequency motions to appreciable amplitude, as to do so would 
require a source that remained coherent over great distances. Thus the increase of 
wavelength emerges as the main factor determining the frequency below which the 
amplifying part of the response ceases to be of physical interest. We note that the 
main effect of changing the vertical shear would be to alter the time base as the non- 
dimensional characteristics are not too sensitive to /3. For example, the results for 
halved shear may be obtained approximately from table 1 by doubling the periods 
and halving the phase speeds. This would have the effect of increasing the amplification 
and decreasing the wavelength of low-frequency disturbances, making them 
correspondingly easier to excite. 

There are two studies of atmospheric variability to which these results may be 
compared. The first is that of Blackmon et al. (1984a, b), who studied the pattern 
of variation of the 500 mb height field subjected to various time-domain filters. It 
appears from this study that the properties of high-frequency (2.5-6 day) transients 
are generally consistent with the results shown in table 1. Specifically, the typical 
wavelength is about 3000 km, which falls within that predicted in the 2.5-5 day 
range in table 1. The typical observed phase speed is reported to be 10-15 m/s; these 
speeds are somewhat greater than those in table 1, but the higher speeds are generally 
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seen in the jet maxima, where they can be accounted for on the basis of stronger than 
average winds. This comparison lends further support to the already well-accepted 
interpretation of the high-frequency eddies as the product of baroclinic instability. 
A notable discrepancy though, is that comparison of results for a 2.5-4 day filter with 
those for a 2.5-10day filter suggests rather less dependence of wavelength on 
frequency than would be expected on the basis of table 1. 

The properties of low-frequency (> 10 day) eddies adduced in Blackmon et al. 
(1984a, b), on the other hand, are clearly inconsistent with the baroclinic motions 
described in table 1. The observed low frequency motions have wavelengths of about 
7000 km, which is notably shorter than even the 10-day value given in table 1. More 
critically, the observed motions exhibit essentially zero phase speeds, though they 
show considerable downstream group propagation. As noted by Blackmon et al., the 
low-frequency transients are more xuggestive of low-frequency barotropic Rossby- 
wave packets. Taking the comparison further, we observe that in a werticuZZy sheared 
atmosphere with small surface wind there exists a spectrum of low-frequency 
equivalent barotropic Rossby waves with k x k, (wavelength about 7000 km for 
p = 0.5), small phase speed, and rapid downstream group velocity (Held et al. 1985). 
The probable reason why the amplifying modes leave no signature in the 
low-frequency height pattern is that the power spectrum of the height field is very 
red, whence the lowest frequencies dominate the behaviour. As we have seen, the 
amplifying disturbances corresponding to periods much longer than 15 days have 
ultralong wavelengths, and are correspondingly difficult to excite. 

Analysis of the height field alone does not provide any information on the vertical 
structure of the disturbances. Moreover, it fails to distinguish those motions 
predominantly responsible for the rectified eddy fluxes which affect the mean state 
of the atmosphere. Plumb (1986) analysed atmospheric variability in terms of a 
quadratic quantity measuring the influence of the transient eddies on the time-mean 
circulation, and obtained a picture more consonant with our results. In particular, 
the structure of low-frequency (> 10 day) eddies was found to be similar in all 
essential features to that of the high-frequency (2-10 day) eddies, which are generally 
accepted to represent baroclinic disturbances. Both classes of eddies are characterized 
by considerable baroclinic transport, the chief distinguishing feature of the low- 
frequency case being that the flux patterns have larger spatial scales. Diagnostic 
quantities of the sort employed by Plumb (1985) also, under some circumstances, 
provide a measure of the group velocity of the disturbances under consideration. 
However, this interpretation is based upon the use of the local Rossby-wave 
dispersion relation for unsheared flow, and may not be valid for motions satisfying 
more complicated dispersion relations. Thus, Plumb’s finding that low-frequency 
motions have substantial westward group propagation relative to the mean flow in 
reality means only that the motions contributing to the flux are of rather large scale; 
this is also consistent with the characteristics of spatial baroclinic instability. 

A feature of atmospheric variability common to short and medium timescales is 
that the maximum variance occurs in the jet exit regions, well downstream of the 
regions of maximum baroclinicity. In the exit regions, the surface wind and the 
vertical shear are relatively weak. This is suggestive of the monotonic increase of 
spatial amplification rate with decreasing surface wind. Because the amplification 
rate for w = 1 is singular in the limit of vanishing U,,, the higher-frequency motions 
should be particularly sensitive to U,, (recall 94.3), and indeed, the observed 
high-frequency variabiity is more localized in the exit regions. Moreover, decreasing 
the shear with U,, fixed increases the non-dimensional frequency and therefore 
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increases the amplification rate for most frequencies of interest. Thus the weak shear 
in the exit regions enhances the effect. Ekman friction, however, would modify this 
behaviour. In  the presence of Ekman friction, short waves in the temporal (and hence 
the spatial) problem become stable when the shear is made sufficiently weak. This 
would put a lower limit on the values of U,, and shear for which the mechanism‘ 
discussed above can operate. 

An alternate theory of the distribution of eddy activity was proposed in Pierre- 
humbert (1984). In  that work, temporally growing free eigenmodes for a basic state 
varying in the streamwise direction were constructed by means of a WKB asymptotic 
analysis. It was shown that if the basic state, considered as a locally parallel flow, 
is absolutely unstable at some point (and provided certain subsidiary conditions are 
met) then there exist eigenmodes with the properties: (i) the growth rate is that of 
the absolute instability; (ii) the peak amplitude of the mode occurs downstream of 
the site of absolute instability; and (iii) the amplitude decays to zero exponentially 
at large distances upstream and downstream of the peak. When the flow is not 
absolutely unstable anywhere, there are no unstable eigenmodes unless periodic 
boundary conditions in the streamwise condition are imposed, in which case the 
temporal growth relies on wavepackets repeatedly passing through the zone of strong 
instability. The spatial formulation considered in the present work becomes attractive 
only when the flow is not absolutely unstable anywhere. In this formulation the 
variability is portrayed as a somewhat local response to stochastic forcing of a system 
defined on the open domain x E [ - co, co]. This recognizes the existence of a great deal 
of ‘background noise ’ in the atmosphere, and relaxes the unrealistic assumption 
(necessary in the convectively unstable temporal problem) that all excitation of the 
instability arises from disturbances that complete a circuit of the globe. When the 
flow is absolutely unstable, on the other hand, it is not necessary to posit an external 
agent forcing the variability, as the absolute instability provides the needed 
excitation. The spatial theory for the convectively unstable case and the temporal 
theory for the absolutely unstable case share the common feature that both rely on 
regions of slow eddy propagation to enhance the instability. Indeed, as noted above, 
the regions of weak surface wind just barely miss being absolutely unstable. When 
applicable, the temporal eigenmode theory is more self-contained, as it yields a 
disturbance with a definite amplitude peak. In  the forced spatial problem, on the 
other hand, the amplificdion rate has a sharp regional peak, but remains everywhere 
positive ; thus an additional mechanism - perhaps Ekman friction or nonlinear 
saturation - must be invoked in order to reproduce the observed peak in amplitude 
near the jet exit regions. 

7. Conclusions 
We have shown that when a vertically sheared fluid on the quasigeostrophic p-plane 

is subjected to localized oscillatory forcing, a spatially amplifying train of waves is 
set up on the downstream side of the source. This wavetrain exhibits downstream 
(ea-stward) phase propagation and achieves its amplification by drawing energy 
baroclinically from the basic state ; it exists in addition to the familiar (and expected) 
spectrum of neutral, equivalent-barotropic forced Rossby waves. At low frequencies 
the amplifying branch of the response is characterized by long wavelengths. The 
amplification rate can be physically significant even at quite low frequencies 
(corresponding to periods of x 10-15 days). 

In  the course of solving the spatial instability problem that led to the results 
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described above, we have re-examined the question of absolute instability in the 
Charney problem. Our conclusion is that the Charney profile (with positive shear) 
is not absolutely unstable, provided that the wind a t  the ground is greater than or 
equal to zero. The dispersion relation w(k) does possess a saddle point with 
Im (0) > 0, but this does not lead to absolute instability as the two branches of k(w)  
coalescing at the saddle originate on the same side of the real k-axis. Insufficient 
attention to this detail in the work of Farrell (1982, 1983) had lead to suggestions 
of absolute instability in the Charney problem with positive surface wind. The lesson 
to be learned from this history is applicable to a2Z absolute instability calculations: 
methods that simply isolate selected roots of dw/dk = 0 without examining the 
topology of the images of the Bromwich contours are of little utility. Similarly, 
methods that do not guarantee that all relevant saddle points have been found 
cannot provide a reliable answer to the question of absolute instability. For all but 
the simplest dispersion relations, an exhaustive search of the myriad of candidate 
saddle points would be prohibitive. The continuation method we have described 
above circumvents these difficulties by identifying precisely those saddle points that 
come from collision of roots that originated on opposite sides of the real k-axis. 
This technique can be applied to any problem for which the temporal stability 
characteristics are known. 

The lack of absolute instability for positive surface wind is important, because i t  
implies that under typical atmospheric circumstances the forced-wave problem is 
physically meaningful even though the atmosphere supports baroclinic instabilities. 
On the spherical Earth, temporally growing instabilities will eventually dominate the 
forced response, but this effect will be felt only after the growing wavepackets have 
had time to complete a circuit of the globe. It is most likely that nonlinear effects 
would intervene before this time is reached. 

For small to moderate positive surface winds, the spatial amplification rate has 
a maximum near w = 1 (dirnensionallyfU,/N) ; at zero surface wind the amplification 
rate becomes infinite there, owing to the vanishing group velocity of short-wave 
distances. As the surface wind is made larger, the maximum growth rate moves out 
to approximately w = U,k,, where k, is the wavenumber of maximum temporal 
growth rate of the Charney mode. In the spatial problem distinct Green and Charney 
modes do not appear. Unless the surface wind is extremely large, the spatial 
amplification rate has only a single maximum with respect to w .  For small or 
moderate surface wind, the only signature of the distinction remaining is that the 
rate of increase of amplification with frequency is rather small at  low frequencies, 
but becomes larger as w enters the Charney mode range. The approximate boundary 
increases roughly linearly with surface wind, and is not very sharp when the surface 
wind is small. Thus, in the parameter range of atmospheric interest, there is 
considerable continuity between the structures of response to low- and high-frequency 
forcing ; as the frequency of the forcing is reduced, the amplification rates smoothly 
decrease and the wavelengths smoothly increase. 

The properties of spatial baroclinic instability deduced in the present work have 
implications for the structure of atmospheric variability at both high and low 
frequencies. In the high-frequency case the primary interest lies in understanding the 
positions of the major storm tracks (regions of large high-frequency variance). If one 
thinks of the storm tracks as the ensemble averages response of the unstable system 
to stochastic forcing, then the spatial theory correctly predicts the intensification of 
amplitudes in the weak winds of the jet exit regions. We have argued that the 
proposed mechanism is essentially the same as the now-classic one proposed by 
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Landahl (1972) in explanation of localized regions of intensified variability in 
boundary layer flows. The spatial formulation provides a theory of storm track 
structure complementary to the theory based on local absolute instability proposed 
in Pierrehumbert (1984). 

At low frequencies the characteristics of the spatial instability seem consistent 
with the patterns of rectified eddy fluxes seen in the analyses of atmospheric data 
discussed by Plumb (1986). Both the theoretical and the observational work suggest 
that the fluxes due to low-frequency motions are governed by processes similar to 
the baroclinic growth responsible for the high-frequency eddies. In  addition, the 
low-frequency amplifying disturbances suggest a novel mechanism mediating the 
effect of anomalous surface conditions (particularly sea-surface temperature anoma- 
lies) on the large-scale atmospheric flow. The anomalous time-mean forcing associated 
with such conditions will in general be accompanied by an anomalous fluctuating 
component as well. The latter will excite large-scale low-frequency amplifying 
disturbances, which can remain coherent over great distances; in the end it may be 
the rectified fluxes due to such motions that force the persistent atmospheric 
anomaly. Indeed, there are some indications that something of this sort occurs during 
El Niiio (Kok & Opsteegh 1985). 

Detailed consideration of mechanisms for the excitation of spatial baroclinic 
instability will be left for future work. In  particular, it will be shown that the 
scattering of a neutral external-mode Rossby wave from a mountain excites such an 
amplifying wavetrain on the downstream side of the mountain. Indeed, continued 
wind fluctuation of any sort over a mountain would excite the instability; this may 
contribute to the phenomenon of lee cyclogenesis east of the Rocky mountains. 
Another desirable extension would be to perform a WKB analysis of an amplifying 
wavetrain propagating through a medium that is slowly varying in the 2- and 
y-directions. Such an extension would constitute a generalization of the ray-tracing 
theory for stationary waves developed and applied with profit by Hoskins & Karoly 
(1981). 

Appendix A. Dispersion relation near critical point 
In this appendix we determine w(k) (and thence k(o) )  for k near to one of the points 

k, where w = 0. We shall carry out the computation for U, = 0 and recover the 
general case at the end by Galilean invariance. Our derivation closely follows that 
of Miles (1964a), except that we retain sufficient terms to yield a valid asymptotic 
expansion of Re (0) for the Charney modes. The notation used is that of Pedlosky 
(1979), and it is assumed that the reader is familiar with the material described there. 
Define 

l + P  
(1 +4p”$’ 

r =  

4k n 
E = -x - l  tan ( x a )  = -A l+4p;(k-kc)+. . .  
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and ,u2 = k2+12, where n is a positive integer. As is well known, w vanishes when 
,u = ,uc- As reviewed in Pedlosky (1979), the problem can be solved in terms of 
confluent hypergeometric functions, and the asymptotic properties of these functions 
can then be used to determine the behaviour near ,uc (i.e. for small 6) .  In terms of 
a suitably transformed dependent variable F and independent variable 5, the 
solution for small E and 5 is 

] n(l 
~ n ) 5 ~ o g ~ + ~ +  R,], F(5)  = I-n[logS+;+R, - 

E 
(A 5 )  

1 1 

where a,, is the Kronecker delta and R, and R, are order-unity real constants which 
will not concern us. The bottom boundary condition 

determines the eigenvalue Eo, which is related to w by 

+ ... . 4 1  +PI go = -- 
nkC 

Substituting (A 5) into (A 6) yields 

in which the O(E)  correction to the first coefficient is purely real. The dominant 
balance for small E is between the first and last term. A straightforward calculation 
yields the expansion 5, = A , d + A , s + A , A +  ..., 

where 

A, = !ixA,+R (A 12) 

for the unstable branch. R is a real constant, which we shall not use as the O(& term 
in (A 9) is needed only to provide the lowest-order imaginary part of 5,. 

Coefficients A, and A, are of course the same as determined by Miles. Miles did 
not compute A,, and it seems to have been widely assumed that it is zero. Lindzen 
& Rosenthal (1981) pointed out that numerical evidence suggests the presence of an 
O(s) term in the critical-point expansion, and demonstrated the existence of such a 
term on the basis of a WKB approximation. However, since the WKB approximation 
is not strictly valid for the problem at hand, it was necessary (and, as we have seen, 
entirely straightforward) to compute the term using asymptotic properties of the 
hypergeometric functions. 

The relation (A 9) is easily solved for k in terms of w. If a F w(l+/3)/nkc then 

k- k, = - B, 52, - B, 51'+ iB, 51' + B; 52' + . . ., (A 13) 

where B, = l /bAt,  

B, = 2A,/bA:, 

B, = -R/bA: ,  
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and Bj is a real constant which will not concern us. Note that these three constants 
are positive. Using Galilean invariance, the result for general Uo is obtained by 
making the replacements 

, (A 17) 

(A 18) 

For positive U,, B, remains positive, though B, can become negative if Uo is 
sufficiently negative. 

The above discussion presumes k =+ 0. In the special case when k = 0 is a critical 
point (e.g. when 1 = 0 and B is an integer), some minor modifications are required. 
In this case the lowest-order expressions for B and 6, become 

uo kA1 +B) 
nkc 

Q*Q- 

A, =$ A, + U,/b.  

8 = -b'k2+..., (A 19) 

6, = -w(l+B)/nk+ ..., (A 20) 

where b' = 2n/(l+4,4). Then, using the new forms of B and E0, (A 9) implies 

for Uo = 0, whence 

nA 
w = - i L k 2 + O ( k 3 )  

w = Uok-i%k2+O(k3) 

1+B 

1+B 

for the general case. To lowest order, k is then given by 

where D E -nAl/(l +B). Since D > 0, this solution amplifies in the positive 
x-direction. 

Appendix B. Short-wave dispersion relation 
In the following we determine the behaviour of the Charney problem dispersion 

relation for large values of k. Our approach follows that of McIntyre (1972). The 
short-wave behaviour of baroclinic instability was first discussed in Miles (1964 b), 
by somewhat more circuitous means. 

Let 5 = kz and 4 = w -  Uo k, so that (2.3) becomes 

[ l + B  1 $ = O ,  1 a,, $ - k-la,$ + k-i-- g-; 

a,$+$/; = 0 a t  5 = 0. (B 1b) 

4 = 40+k-'&l+ ..., $ = $o+k-l$l+... (B 2) 

Substituting the expansions 

into (B 1) and matching like powers, the lowest-order equations are found to be 

whence 

a, $0 - $0 = 07 

ii),$o+$/40 = 0 at 5 = 0, 

$o = e-5, ( j 0  = 1. 

11 F L I  170 
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At the next order the equations are 

a,$,+$, = Gl at 5 = 0. (B 5 b )  

On multiplying (B 5a)  by q50, integrating from 5 = 0 to 00 and making use of (B 5 b )  
it is found that 

As the integral in (B 6) exists only in the distributional sense, a desingularization 
must be specified in order to permit its evaluation. Recognizing that the neutral 
solution at infinite k is the limit of a weakly unstable mode, we substitute cjo+is 
for Go in (B6) ,  where s is an infinitesimal positive number. Making use of the 
identity 

where the Cauchy principal value appears in the first term and the Dirac &-function 
appears in the second, (B 6) becomes 

(8 - ie)-- = P(8- l )  + inS(e), (B 7) 

Gl = (t+(1+/?)p)+in(l+p)e-2, (B 8) 
Q) e-26 

d5- = -0.6705... 
0 5-1 

where 

The imaginary part of (B 8) is identical with equation (13.14b) in Miles (1964b) ; Miles 
did not give an explicit formula for the real part. Note that the real part of GI is 
negative for all positive P, so that, the asymptotic frequency is approached from 
below. The extension of this derivation to an arbitrary wind profile U ( z )  with unit 
shear at the ground is straightforward, and it can be shown that the formulae for 
the general case are identical to those presented above. 

When Uo = 0, solving for k in terms of w yields 

k = b / ( w -  l ) ,  

b = (++ ( I  + P ) p )  + in( 1 +P)  e-2, 

(B 7) 

(B 8) where 

whence k,++m and ki-+-cO as w+l from below. When U, =I= 0, k is obtained by 
solving a quadratic equation, which yields 

k = { ( ~ - 1 ) + [ ( ~ - 1 ) ~ - 4 U ~ b ] ~ } / 2 U ~ .  (B 9) 

The choice of sign is dictated by the requirement that k become large when w is large. 
Formulae (B 7) and (B 9) are valid only when the predicted k is large. For (B 7) this 
requires that w x 1. For (B 9) the requirement is that w be order unity or greater 
if Uo -4 1 or that w be large if Uo 3 O(1). 
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